
UNIT-IV

1

Recurrent

Neural

Network

CONTENTS

 Introduction to RNN

Comparison of FFNN and RNN

Architecture of RNN

 How RNN Works

 Activation Function of RNN

 Mathematical Representation of RNN

 Types of RNN

Applications of RNN
2

 Q: Ever wonder how chatbots understand your questions or how

apps like Siri and voice search can decipher your spoken requests?

 Ans: The secret weapon behind these impressive feats is a type of

artificial intelligence called Recurrent Neural Networks (RNNs).

 Recurrent Neural networks imitate the function of the human brain

in the fields of Data science, Artificial intelligence, machine

learning, and deep learning, allowing computer programs to

recognize patterns and solve common issues.

 Recurrent neural network (RNN) is a type of artificial neural

network that is used to process sequential data.

INTRODUCTION

3

 In Recurrent Neural Network(RNN) where the output from the

previous step is fed as input to the current step. In traditional

neural networks, all the inputs and outputs are independent of each

other.

 Still, in cases when it is required to predict the next word of a

sentence, the previous words are required and hence there is a

need to remember the previous words. Thus RNN came into

existence, which solved this issue with the help of a Hidden Layer.

CONTD..

4

 The main and most important feature of RNN is its Hidden state,

which remembers some information about a sequence. The state is

also referred to as Memory State since it remembers the previous

input to the network.

 In this Network is commonly used in speech

recognition and natural language processing. Recurrent neural

networks recognize data's sequential characteristics and use patterns

to predict the next likely scenario.

 RNN use cases tend to be connected to language models in which

knowing the next letter in a word or the next word in a sentence is

predicated on the data that comes before it.

CONTD..

5

 FFNN: A feed-forward neural network has only one route of

information flow: from the input layer to the output layer, passing

through the hidden layers.

 The data flows across the network in a straight route, never going

through the same node twice.

 A feed-forward neural network can perform simple classification,

regression, or recognition tasks, but it can’t remember the previous

input that it has processed.

 that’s why FNNs are poor predictions of what will happen next

because they have no memory of the information they receive.

COMPARING FFNN AND RNN

6

 RNN: The information is in an RNN cycle via a loop. Before

making a judgment, it evaluates the current input as well as what it

has learned from past inputs.

 A recurrent neural network, on the other hand, may recall due to

internal memory. It produces output, copies it, and then returns it

to the network.

CONTD..

7

8

 A recurrent neural network appears very just like feed forward

neural networks, except it also has connections pointing backwards.

 It has 3 Layers. Those are

 Input Layer

 Hidden Layer and

 Output Layer

 RNNs are a type of neural network that has hidden states and

allows past outputs to be used as inputs. They usually go like this:

ARCHITECTURE OF RNN

9

ARCHITECTURE OF RNN

10

 The fundamental processing unit in a Recurrent Neural Network

(RNN) is a Recurrent Unit, which is not explicitly called a

“Recurrent Neuron.”

 This unit has the unique ability to maintain a hidden state, allowing

the network to capture sequential dependencies by remembering

previous inputs while processing.

 Input Layer: Here, “x” is the input layer, “h” is the hidden layer,

and “y” is the output layer. A, B, and C are the network parameters

used to improve the output of the model.

CONTD..

11

 Recurrent Layer: Normally a hidden layer or node has two

parameters: bias and weight. But a recurrent node has three

parameters: input, bias, and weight.

 At any given time t, the current input is a combination of input at

x(t) and x(t-1). The output at any given time is fetched back to the

network to improve on the output.

CONTD..

12

 In RNNs, the information cycles through the loop to the middle

hidden layer.

CONTD..

13

 Here the Unfolding RNN is :

HOW DOES RNN WORK

14

CONTD..

15

CONTD..

 Multiple hidden layers can be found in the middle layer h, each

with its own activation functions, weights, and biases.

16

ACTIVATION FUNCTIONS USED IN RNN

 A neuron’s activation function dictates whether it should be

turned on or off. Nonlinear functions usually transform a

neuron’s output to a number between 0 and 1 or -1 and 1.

The following are some of the most commonly utilized functions:

17

CONTD..

 Sigmoid Function (σ(x))

Formula: σ(x) = 1 / (1 + e^(-x))

Behavior: Squishes any real number between 0 and 1.

 Hyperbolic Tangent (tanh(x))

Formula: tanh(x) = (e^x – e^(-x)) / (e^x + e^(-x))

Behavior: Squeezes any real number between -1 and 1.

Rectified Linear Unit (ReLU)(x))

Formula: ReLU(x) = max(0, x)

Behavior: Outputs the input value if positive, otherwise outputs 0.
18

MATHEMATICAL REPRESENTATION

19

CONTD..

20

CONTD..

These parameters are updated using Back propagation. However,

since RNN works on sequential data here we use an updated back

propagation which is known as Back propagation through time.

21

TYPES OF RNN

 There are different types of recurrent neural networks with varying

architectures. Some examples are:

 1. One to One: Here, there is a single (Xt,Yt) pair. Traditional

neural networks employ a one-to-one architecture.

22

CONTD..

 2. One to Many: In one-to-many networks, a single input at Xt can

produce multiple outputs, e.g., (yt0,yt1,yt2).

 Music generation is an example area where one-to-many networks

are employed.

23

CONTD..

 3. Many to One : In this case, many inputs from different time

steps produce a single output.

 For example, (Xt,Xt+1,Xt+2) can produce a single output Yt. Such

networks are employed in sentiment analysis or emotion detection,

where the class label depends upon a sequence of words

24

CONTD..

 4. Many to Many : here are many possibilities for many-to-many.

An example is shown above, where two inputs produce three

outputs. Many-to-many networks are applied in machine

translation, e.g., English to French or vice versa translation systems.

25

CONTD..

26

APPLICATIONS OF RNN

 1. Image Captioning: RNNs are used to caption an image by

analyzing the activities present.

27

 2. Time Series Prediction: Any time series problem, like predicting

the prices of stocks in a particular month, can be solved using an

RNN.

 3. Natural Language Processing: Text mining and Sentiment

analysis can be carried out using an RNN for Natural Language

Processing (NLP).

CONTD..

28

 4. Machine Translation: Given an input in one language, RNNs can

be used to translate the input into different languages as output.

 Eg: Google Translator

CONTD..

29

UNIT-IV

1

Encoder-Decoder

Sequence-to-Sequence

Architectures

CONTENTS

 Introduction

Seq to Seq Model

How Sequence Model Works

 Advantages

 Applications

 Applications of RNN

2

 In the field of Deep Learning, the encoder-decoder architecture is

a widely-used framework for developing neural networks that can

perform natural language processing (NLP) tasks such as language

translation, text summarization, and question-answering systems, etc

which require sequence-to-sequence modeling.

 This architecture involves a two-stage process where the input data

is first encoded (using what is called an encoder) into a Fixed-length

numerical representation, which is then decoded (using a

decoder) to produce an output that matches the desired format.

ENCODER- DECODER SEQUENCE TO SEQUENCE

ARCHITECTURE

 An encoder-decoder is a neural network architecture commonly

used in sequence-to-sequence (Seq2Seq) models, particularly in

tasks involving natural language processing (NLP) and machine

translation. It consists of two main components: an encoder and a

decoder.

CONTD..

 There are 3 main Blocks in the Encoder-Decoder model

 Encoder

 Hidden Vector

 Decoder

 The Encoder will convert the input sequence into a single-

dimensional vector (hidden vector). The decoder will convert the

hidden vector into the output sequence.

CONTD..

 1. Encoder: The encoder takes an input sequence and processes it

into a Fixed-size representation called the “context vector” or

“thought vector.”

 The input sequence can be a sentence, paragraph, or any sequential

data. The encoder typically uses recurrent neural networks (RNNs)

such as LSTM (Long Short-Term Memory) to capture the

sequential dependencies of the input.

 It processes the input sequence step by step and summarizes the

information in the context vector, which aims to capture the

essential information of the input.

CONTD..

 2. Decoder: The decoder takes the context vector produced by the

encoder and generates an output sequence. It can be another

sequence of different length, such as a translated sentence or a

response in a chatbot.

 Like the encoder, the decoder often utilizes an RNN architecture.

It takes the context vector as the initial hidden state and generates

each element of the output sequence step by step.

CONTD..

 Let’s take machine translation from English to French as an

example.

 Given an input sequence in English: “They”, “are”, “watching”, “.”,

this encoder–decoder architecture first encodes the variable-length

input into a state, then decodes the state to generate the translated

sequence, token by token, as output: “Ils”, “regardent”, “.”.

CONTD..

 The following picture represents the encoder-decoder architecture

as explained here. Note that both input and output sequences of

data can be of varying length as shown in the picture below.

CONTD..

 Introduced for the first time in 2014 by Google, a sequence to

sequence model aims to map a fixed-length input with a fixed-length

output where the length of the input and output may differ.

 For example, translating “What are you doing today?” from English

to Chinese has input of 5 words and output of 7 symbols (今天你在

做什麼？). Clearly, we can’t use a regular RNN network to map

each word from the English sentence to the Chinese sentence.

 Sequence-to-sequence neural networks process a variable length

sequence of input data (a text sentence, a time series, radio signals,

etc.) and produce in output another data sequence, in general of a

different length (e.g., a translation of the input sentence) .

SEQ TO SEQ MODEL

 Most sequence-to-sequence NNs are based on the encoder-decoder

(Enc/Dec) architecture and produce in output another data

sequence, in general of a different length (e.g., a translation of the

input sentence) .

 Most sequence-to-sequence NNs are based on the encoder-

decoder (Enc/Dec) architecture

CONTD..

 In order to fully understand the model’s underlying logic,

we will go over the below illustration:

HOW SEQUENCE MODEL WORKS

 Encoder: Multiple RNN cells can be stacked together to form the

encoder. RNN reads each inputs sequentially

 For every timestep (each input) t, the hidden state (hidden vector) h

is updated according to the input at that timestep X[i].

 After all the inputs are read by encoder model, the final hidden

state of the model represents the context/summary of the whole

input sequence.

 Example: Consider the input sequence “I am a Student” to be

encoded. There will be totally 4 timesteps (4 tokens) for the

Encoder model.

CONTD..

CONTD..

Example: Encoder

At the first timestep t1, the previous hidden state h0 will be

considered as zero or randomly chosen. So the first RNN cell will

update the current hidden state with the first input and h0.

At each time step, the hidden state h will be updated using the

previous hidden state and the current input.

 Each layer outputs two things — updated hidden state and the

output for each stage. The outputs at each stage are rejected and

only the hidden states will be propagated to the next layer.

 The hidden states h_i are computed using the formula:

CONTD..

 At second timestep t2, the hidden state h1 and the second input

X[2] will be given as input , and the hidden state h2 will be updated

according to both inputs.

 This simple formula represents the result of an ordinary recurrent

neural network. As you can see, we just apply the appropriate

weights to the previously hidden state h_(t-1) and the input

vector x_t.

CONTD..

 2. Encoder Vector: This is the final hidden state produced from

the encoder part of the model. It is calculated using the formula

above.

 This vector aims to encapsulate the information for all input

elements in order to help the decoder make accurate predictions.

 It acts as the initial hidden state of the decoder part of the model.

CONTD..

 3. Decoder : The Decoder generates the output sequence by

predicting the next output Yt given the hidden state ht.

 The input for the decoder is the final hidden vector obtained at the

end of encoder model.

 Each layer will have three inputs, hidden vector from previous layer

ht-1 and the previous layer output yt-1, original hidden vector h.

 t the first layer, the output vector of encoder and the random

symbol START, empty hidden state ht-1 will be given as input, the

outputs obtained will be y1 and updated hidden state h1.

CONTD..

CONTD..

Example: Decoder

 Any hidden state h_i is computed using the

formula:

 As you can see, we are just using the previous hidden

state to compute the next one.

 Example:

CONTD..

 1. Flexibility with Input and Output Sequences: Seq2Seq models

can handle variable-length input and output sequences, particularly

those using the encoder-decoder architecture. This makes them

suitable for tasks like machine translation, where the length of the

input sentence (e.g., English) and the output sequence (e.g.,

French) can differ significantly.

 2. Versatility in Application: Seq2Seq models are not limited to

text-based tasks. They are also employed in speech recognition,

video captioning, and time series prediction.

ADVANTAGES

 A sequence to sequence model lies behind numerous systems

which you face on a daily basis. For instance, seq2seq model

powers applications like Google Translate, voice-enabled devices

and online chatbots. Generally speaking, these applications are

composed of:

 1. Machine Translation: a 2016 paper from Google shows how the

seq2seq model’s translation quality “approaches or surpasses all

currently published results”.

APPLICATIONS

 2. Speech recognition — another Google paper compares the

existing seq2seq models on the speech recognition task.

 3. Video captioning — a 2015 paper shows how a seq2seq yields

great results on generating movie descriptions.

CONTD..

UNIT-IV

1

Long Short Term

Memory

CONTENTS

Disadvantages of RNN

 Introduction to LSTM

Architecture of LSTM

How LSTM Works

 Difference between RNN and LSTM

 Advantages

 Step by Step Explanation
2

 Drawbacks of RNN: An RNN can only remember the immediate

past input. It can't use inputs from several previous sequences to

improve its prediction.

 1. The problem with Recurrent Neural Networks is that they simply

store the previous data in their “short-term memory”. Once the

memory in it runs out, it simply deletes the longest retained

information and replaces it with new data.

 2. Vanishing Gradient Problem: The Vanishing Gradient Problem

is a drawback of recurrent neural networks (RNNs) that occurs

when gradients used to update the network's weights become very

small as they are propagated back through many time steps.

DRAWBACKS OF RNN

 This can make it difficult for RNNs to learn large data sequences.

 A Traditional RNN has a single hidden state that is passed through

time, which can make it difficult for the network to learn long-term

dependencies.

 Based on the above Two Problems we can use LSTM.

CONTD..

 Long Short-Term Memory (LSTM) is a type of artificial recurrent

neural network (RNN) architecture used in the field of deep

learning.

 Long Short-Term Memory is an improved version of recurrent

neural network designed by Hochreiter & Schmidhuber in the Year

1991.

 A sentence or phrase only holds meaning when every word in it is

associated with its previous word and the next one.

LONG SHORT TERM MEMORY

 LSTM, is opposed to RNN, extends it by creating both short-term

and long-term memory components to efficiently study and learn

sequential data.

 Hence, it’s great for Machine Translation, Speech Recognition,

time-series analysis, Audio and Video Classification etc.

 Long Short Term Memory (LSTM) networks are a powerful

variant of Recurrent Neural Networks (RNNs) designed to handle

long-term dependencies in sequential data. The core architectural

advantage of LSTMs over traditional RNNs lies in their memory

cells and gating mechanisms.

CONTD..

 Unlike RNNs, which struggle with the vanishing gradient problem,

LSTMs incorporate specialized gates that manage the flow of

information.

 LSTMs model address this problem by introducing a memory cell,

which is a container that can hold information for an extended

period.

CONTD..

 The LSTM architectures involves the memory cell which is

controlled by three gates:

 The input gate,

 The forget gate, and

 The output gate.

 These gates decide what information to add to, remove from, and

output from the memory cell.

 The input gate controls what information is added to the memory

cell.

LSTM ARCHITECTURE

 The forget gate controls what information is removed from the

memory cell.

 The output gate controls what information is output from the

memory cell.

 Cell (the memory part of LSTM): The cell stores the state of a

sequence, so it has the ability to either keep or forget certain

information.

 The LSTM maintains a hidden state, which acts as the short-term

memory of the network. The hidden state is updated based on the

input, the previous hidden state, and the memory cell’s current state.

CONTD..

CONTD..

CONTD..

 Here Information is retained by the cells and the memory manipulations

are done by the gates.

 Let's assume we have a sequence of words (w1, w2, w3, ..., wn) and we are

processing the sequence one word at a time. Let's denote the state of the

LSTM at time step t as (ht, ct),

 where ht is the hidden state and ct is the cell state.

 ct-1 stands for the input from a memory cell in time point t;

Xt is an input in time point t;

 ht is an output in time point t that goes to both the output layer and the

hidden layer in the next time point.

HOW DOES IT WORKS?

CONTD..

 Thus, every block has three inputs (xt, ht-1, and ct-1) and two

outputs (ht and ct). An important thing to remember is that all these

inputs and outputs are not single values, but vectors with lots of

values behind each of them.

 Step-1: The LSTM receives the input vector (xt) and the previous

state (ht-1, ct-1).

 Step-2: Forget State: The information that is no longer useful in the

cell state is removed with the forget gate. Two inputs xt (input at the

particular time) and ht-1 (previous cell output) are fed to the gate

and multiplied with weight matrices followed by the addition of bias.

CONTD..

 The resultant is passed through an activation function which gives a

binary output. If for a particular cell state the output is 0, the piece

of information is forgotten and for output 1, the information is

retained for future use.

 Role: By selectively forgetting irrelevant data, the forget gate helps

in preventing the cell state from being cluttered with unnecessary

information.

 The equation for the forget gate is:

CONTD..

CONTD..

[ht-1+Xt] given to sigmoid and the value is stored in ft

 where:

 Wf represents the weight matrix associated with the forget gate.

 [ht-1, Xt] denotes the concatenation of the current input and the

previous hidden state.

 bf is the bias with the forget gate.

 σ is the sigmoid activation function.

CONTD..

 Step-3: Input Gate: The input gate (it) decides what new

information to store in the cell state.

 It has two parts. A sigmoid Function called the "input gate layer" decides

which values we'll update, and a tanh Function creates a vector of new

candidate values (Ct~) that could be added to the state. Ie, First, the

information is regulated using the sigmoid function and filter the values to

be remembered similar to the forget gate using inputs ht-1 and xt. .

 Then, a vector is created using tanh function that gives an output

from -1 to +1, which contains all the possible values from ht-1 and xt.

At last, the values of the vector and the regulated values are multiplied to

obtain the useful information.

CONTD..

 The equation for the input gate is:

 Candidate Values(Cell State Update):

CONTD..

CONTD..

 We multiply the previous state by ft, disregarding the information

we had previously chosen to ignore. Next, we include it∗Ct. This

represents the updated candidate values, adjusted for the amount

that we chose to update each state value.

CONTD..

CONTD..

 Step-4: Output Gate: The task of extracting useful information

from the current cell state to be presented as output is done by the

output gate. First, a vector is generated by applying tanh function on

the cell. Then, the information is regulated using the sigmoid

function . At last, the values of the vector and the regulated values

are multiplied to be sent as an output and input to the next cell.

The equation for the output gate is:

CONTD..

 Hidden State:

CONTD..

LSTM VS RNN

 1. Ability to process sequential data: LSTMs are designed to work

with sequential data, such as time series data or natural language

text. This makes them well-suited for a wide range of applications,

including speech recognition, language translation, and sentiment

analysis.

 2. Ability to handle long-term dependencies: LSTMs are

specifically designed to address the problem of vanishing gradients,

which can occur in traditional RNNs when trying to process long

sequences. This makes them well-suited for tasks that require

processing long-term dependencies, such as predicting stock prices

or weather patterns.

ADVANTAGES

 3. Memory cell: The memory cell in an LSTM allows the network

to selectively remember or forget information over long periods of

time, making it more effective at handling complex tasks than other

types of RNNs.

CONTD..

CONTD..

CONTD..

Step-1: Step-2:

CONTD..

Step-3: Step-4:

CONTD..

Step-5:

CONTD..

Step-6:

CONTD..

Step-7:

