

- * Introduction to RNN
- Comparison of FFNN and RNN
- Architecture of RNN
- * How RNN Works
- Activation Function of RNN
- Mathematical Representation of RNN
- Types of RNN
- Applications of RNN

INTRODUCTION

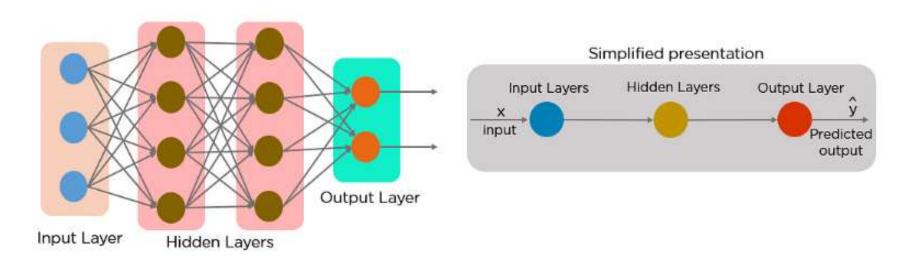
- Q: Ever wonder how chatbots understand your questions or how apps like Siri and voice search can decipher your spoken requests?
- Ans: The secret weapon behind these impressive feats is a type of artificial intelligence called Recurrent Neural Networks (RNNs).
- Recurrent Neural networks imitate the function of the human brain in the fields of Data science, Artificial intelligence, machine learning, and deep learning, allowing computer programs to recognize patterns and solve common issues.
- Recurrent neural network (RNN) is a type of artificial neural network that is used to process sequential data.

- In Recurrent Neural Network(RNN) where the output from the previous step is fed as input to the current step. In traditional neural networks, all the inputs and outputs are independent of each other.
- Still, in cases when it is required to predict the next word of a sentence, the previous words are required and hence there is a need to remember the previous words. Thus RNN came into existence, which solved this issue with the help of a Hidden Layer.

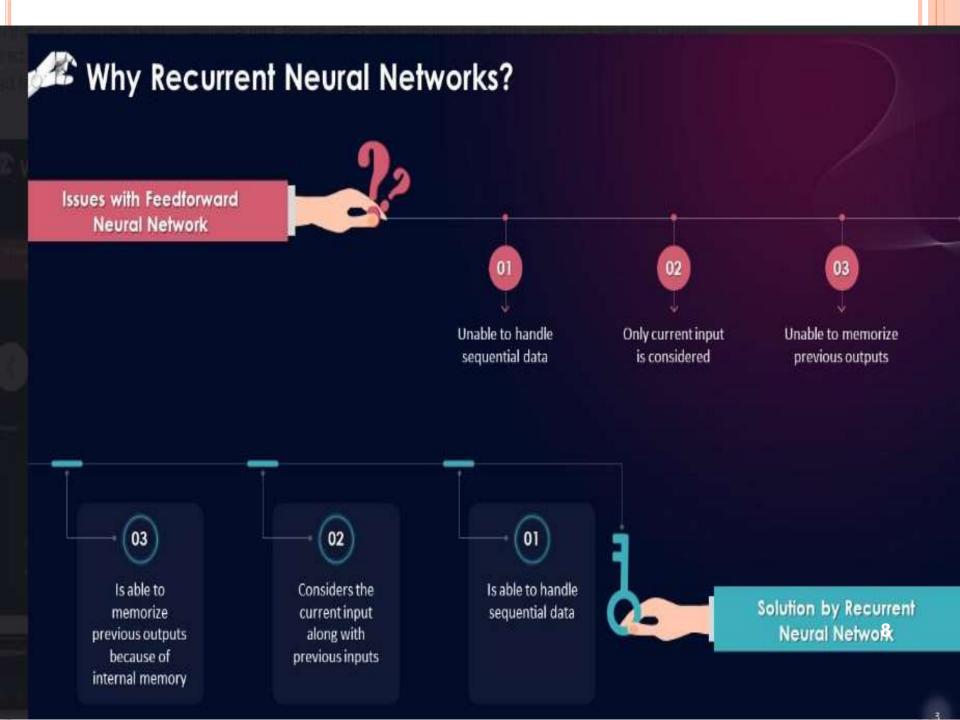
- The main and most important feature of RNN is its <u>Hidden state</u>, which remembers some information about a sequence. The state is also referred to as *Memory State* since it remembers the previous input to the network.
- In this Network is commonly used in <u>speech</u> recognition and <u>natural language processing</u>. Recurrent neural networks recognize data's sequential characteristics and use patterns to predict the next likely scenario.
- > RNN <u>use cases</u> tend to be connected to language models in which knowing the next letter in a word or the next word in a sentence predicated on the data that comes before it.

COMPARING FFNN AND RNN

- FFNN: A feed-forward neural network has only one route of information flow: from the input layer to the output layer, passing through the hidden layers.
- The data flows across the network in a straight route, never going through the same node twice.
- A feed-forward neural network can perform simple classification, regression, or recognition tasks, but it can't remember the previous input that it has processed.
- because they have no memory of the information they receive.



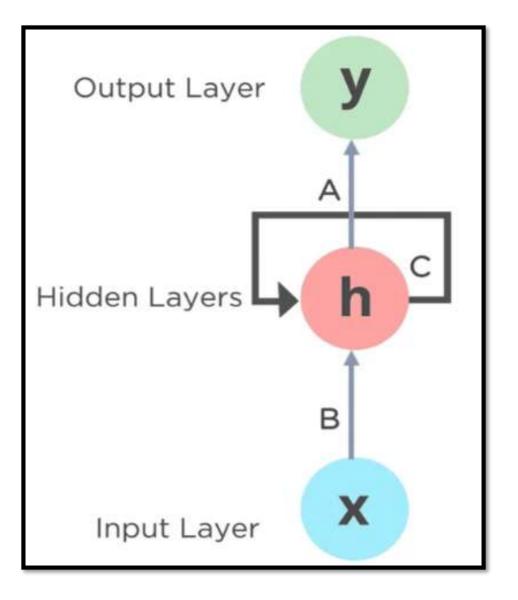
- **RNN:** The information is in an RNN cycle via a loop. Before making a judgment, it evaluates the current input as well as what it has learned from past inputs.
- A recurrent neural network, on the other hand, may recall due to internal memory. It produces output, copies it, and then returns it to the network.



ARCHITECTURE OF RNN

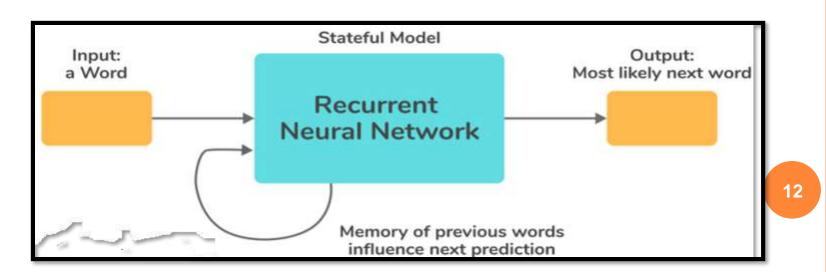
- > A recurrent neural network appears very just like feed forward neural networks, except it also has connections pointing backwards.
- > It has 3 Layers. Those are
 - Input Layer
 - Hidden Layer and
 - Output Layer
- RNNs are a type of neural network that has hidden states and allows past outputs to be used as inputs. They usually go like this:

ARCHITECTURE OF RNN

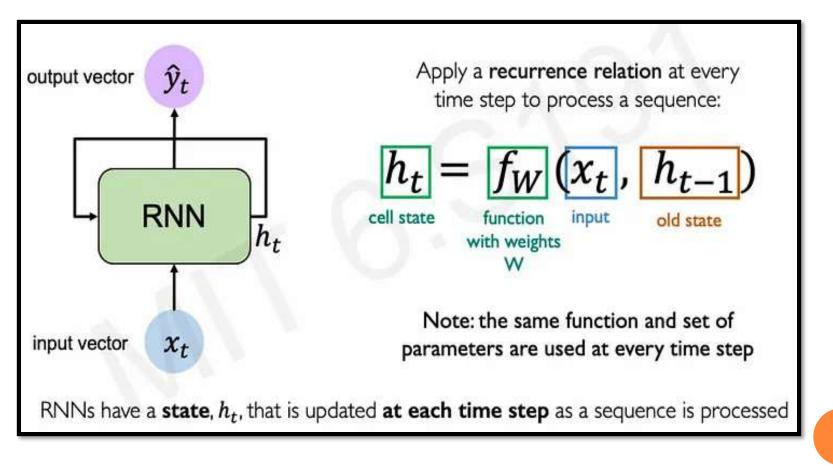


- The fundamental processing unit in a Recurrent Neural Network (RNN) is a <u>Recurrent Unit</u>, which is not explicitly called a <u>"Recurrent Neuron."</u>
- This unit has the unique ability to maintain a hidden state, allowing the network to capture sequential dependencies by remembering previous inputs while processing.
- Input Layer: Here, "x" is the input layer, "h" is the hidden layer, and "y" is the output layer. A, B, and C are the network parameters used to improve the output of the model.

- <u>Recurrent Layer:</u> Normally a hidden layer or node has two parameters: <u>bias and weight</u>. But a recurrent node has three parameters: input, bias, and weight.
- At any given time t, the current input is a combination of input at x(t) and x(t-1). The output at any given time is fetched back to the network to improve on the output.

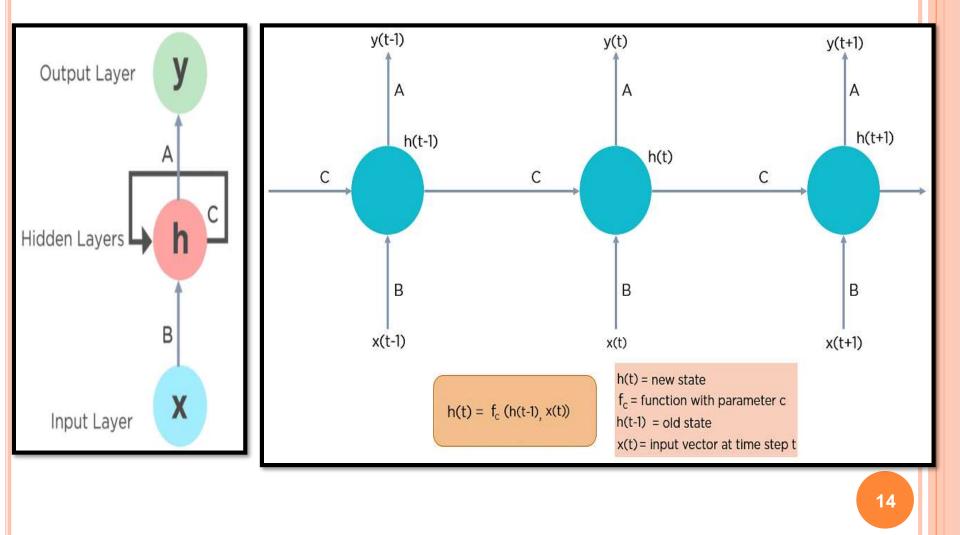


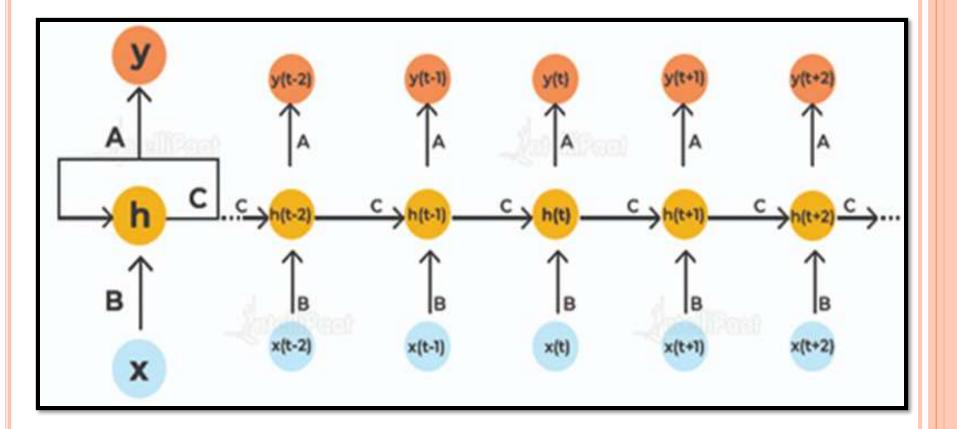
In RNNs, the information cycles through the loop to the middle hidden layer.



HOW DOES RNN WORK

> Here the Unfolding RNN is :



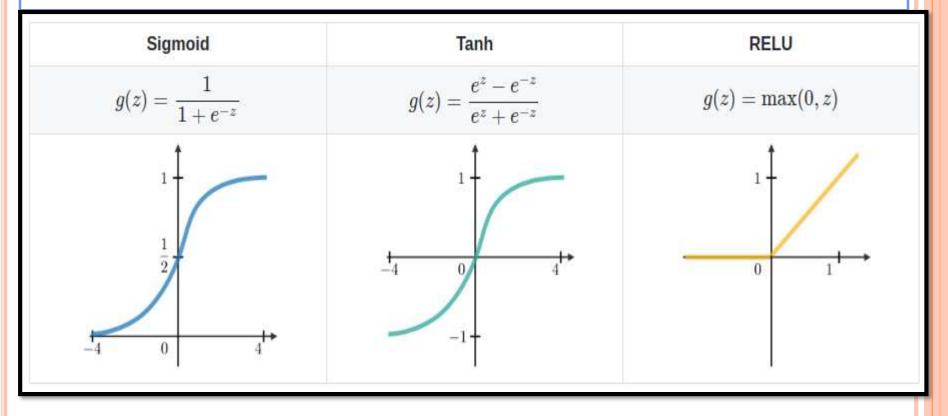


Multiple hidden layers can be found in the middle layer h, each with its own activation functions, weights, and biases.

ACTIVATION FUNCTIONS USED IN RNN

A neuron's activation function dictates whether it should be turned on or off. Nonlinear functions usually transform a neuron's output to a number between 0 and 1 or -1 and 1.

The following are **some of the most commonly utilized functions:**



> Sigmoid Function ($\sigma(x)$)

Formula: $\sigma(x) = 1 / (1 + e^{(-x)})$

Behavior: Squishes any real number between 0 and 1.

Hyperbolic Tangent (tanh(x))

Formula: $tanh(x) = (e^x - e^(-x)) / (e^x + e^(-x))$

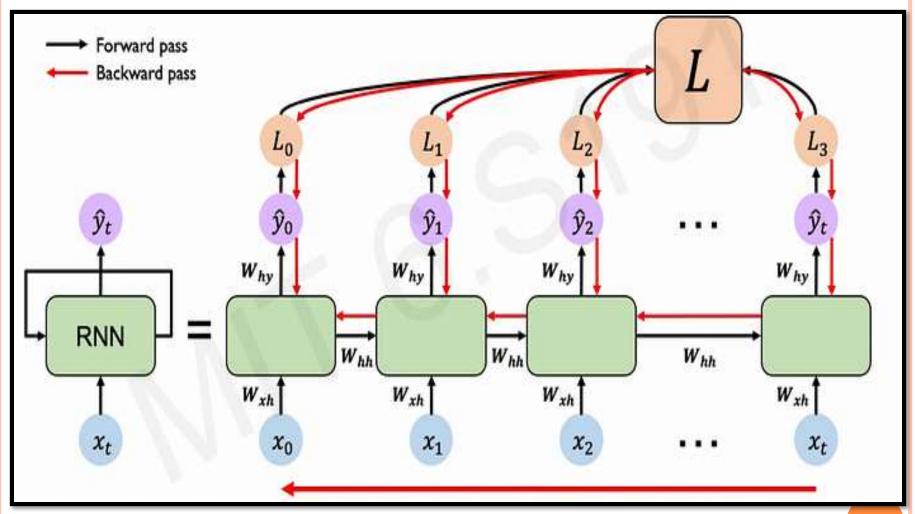
Behavior: Squeezes any real number between -1 and 1.

Rectified Linear Unit (ReLU)(x))

Formula: ReLU(x) = max(0, x)

Behavior: Outputs the input value if positive, otherwise outputs 0.

MATHEMATICAL REPRESENTATION



For calculating the current state -

$$h_t = f(h_{t-1}, x_t)$$

ht – current state

ht-1 – previous state

xt - input state

In order to apply the activation function tanh, we have -

 $h_t = tanh (W_{hh}h_{t-1} + W_{xh}x_t)$

where:

whh -> weight of recurrent neuron and, wxh -> weight of the input neuron

20

The formula for calculating output:

$$y_t = W_{hy}h_t$$

Yt -> output Why -> weight at output layer

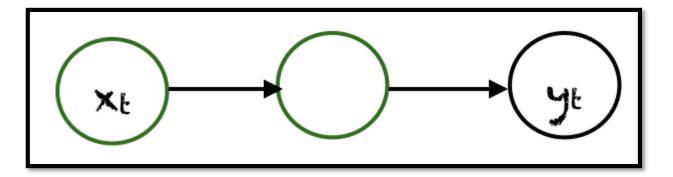
These parameters are updated using **Back propagation**. However,

since **RNN works on sequential data** here we use an **updated back**

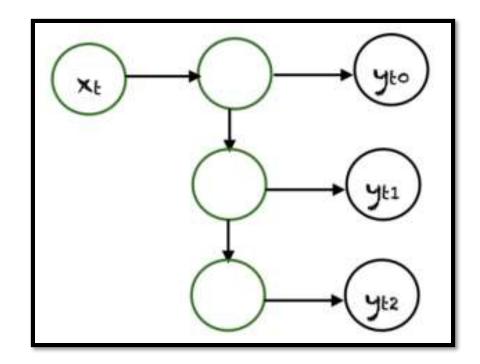
propagation which is known as **Back propagation through time**.

TYPES OF RNN

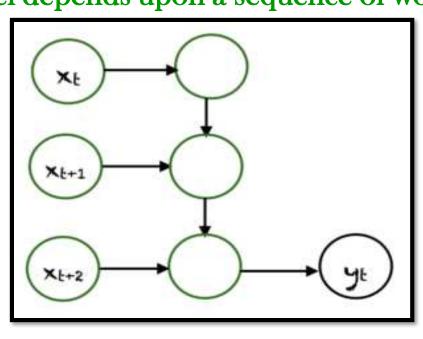
- There are different types of recurrent neural networks with varying architectures. Some examples are:
- I. One to One: Here, there is a single (Xt,Yt) pair. Traditional neural networks employ a one-to-one architecture.



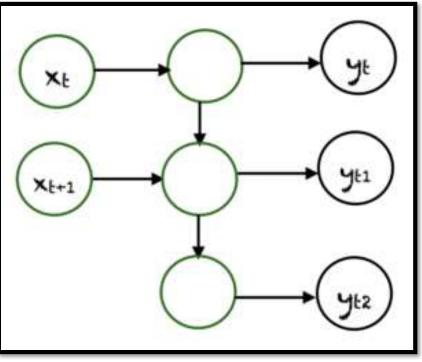
- > 2. One to Many: In one-to-many networks, a single input at Xt can produce multiple outputs, e.g., (yt0,yt1,yt2).
- Music generation is an example area where one-to-many networks are employed.

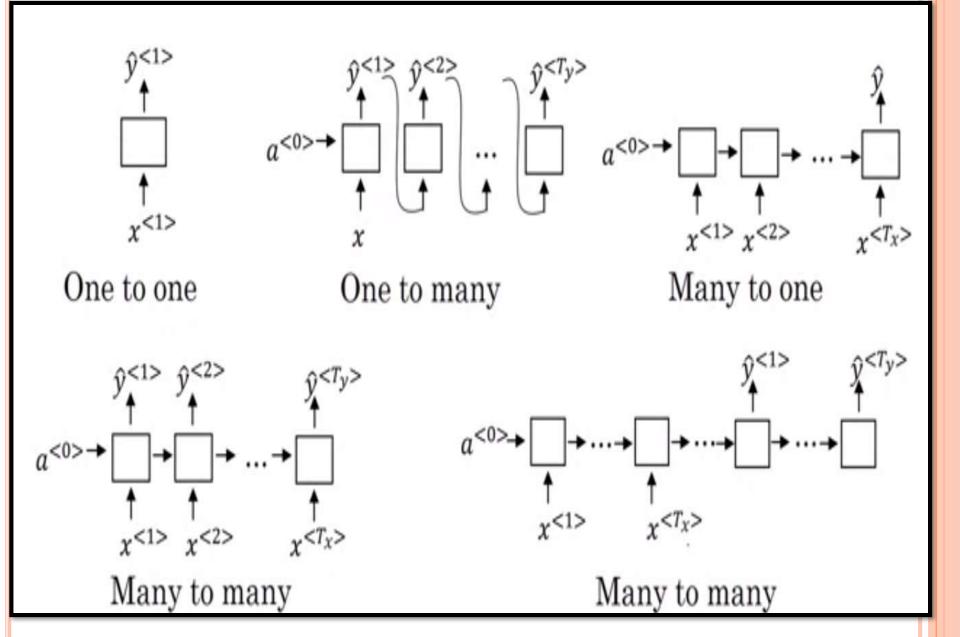


- Solution > 3. Many to One : In this case, many inputs from different time steps produce a single output.
- For example, (Xt,Xt+1,Xt+2) can produce a single output Yt. Such networks are employed in sentiment analysis or emotion detection, where the class label depends upon a sequence of words



An example is shown above, where two inputs produce three outputs. Many-to-many networks are applied in machine translation, e.g., English to French or vice versa translation systems.





APPLICATIONS OF RNN

▶ <u>**1. Image Captioning:</u>** RNNs are used to **caption an image** by</u>

analyzing the activities present.

"A Dog catching a ball in mid air"

28

- 2. Time Series Prediction: Any time series problem, like predicting the prices of stocks in a particular month, can be solved using an RNN.
- <u>> 3. Natural Language Processing:</u> Text mining and Sentiment analysis can be carried out using an RNN for Natural Language Processing (NLP).

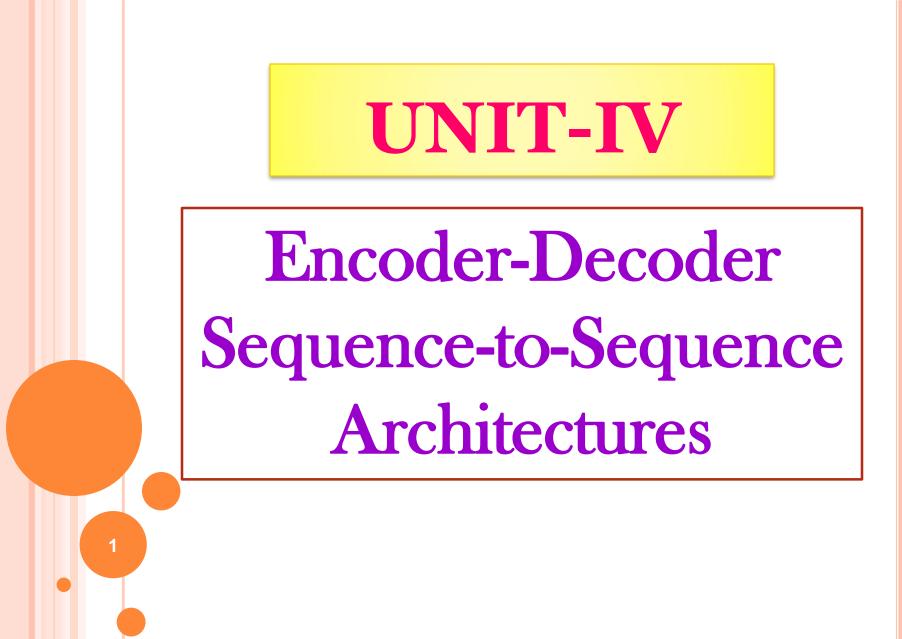
<u>4. Machine Translation:</u> Given an input in one language, RNNs can be used to translate the input into different languages as output.

Eg: Google Translator

Machine Translation

Here the person is speaking in English and it is getting translated into Chinese, Italian, French, German and Spanish languages

THANK YOU!



* Introduction

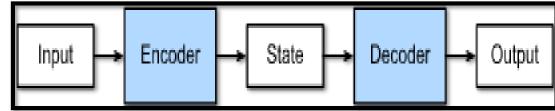
- Seq to Seq Model
- * How Sequence Model Works
- * Advantages
- Applications
- Applications of RNN

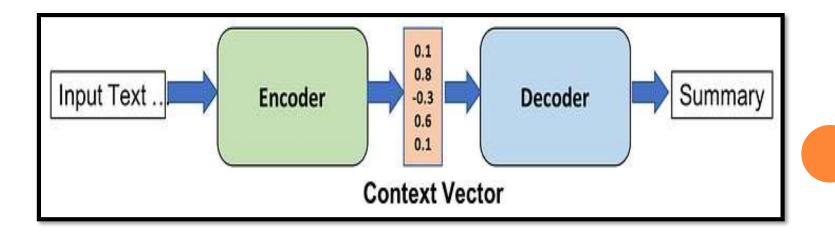
ENCODER- DECODER SEQUENCE TO SEQUENCE ARCHITECTURE

- In the field of Deep Learning, the encoder-decoder architecture is a widely-used framework for developing neural networks that can perform <u>natural language processing (NLP)</u> tasks such as <u>language</u> translation, text summarization, and question-answering systems, etc which require sequence-to-sequence modeling.
- This architecture involves a two-stage process where the input data is first encoded (using what is called an encoder) into a Fixed-length numerical representation, which is then decoded (using a decoder) to produce an output that matches the desired format.

An encoder-decoder is a neural network architecture commonly used in sequence-to-sequence (Seq2Seq) models, particularly in tasks involving natural language processing (NLP) and machine translation. It consists of two main components: an encoder and a

decoder.





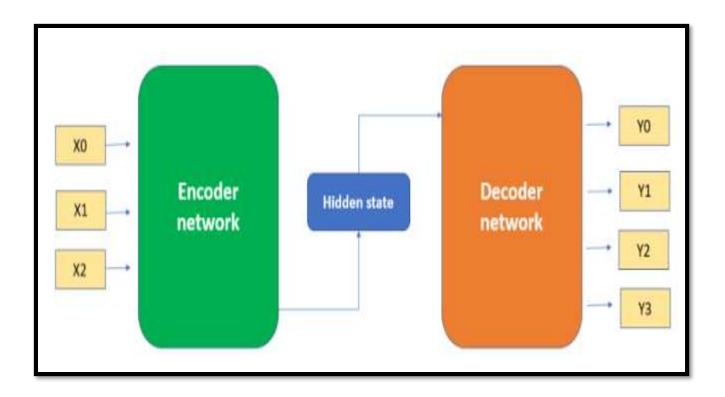
- > There are 3 main Blocks in the Encoder-Decoder model
 - > Encoder
 - > Hidden Vector
 - > Decoder
- The Encoder will convert the input sequence into a singledimensional vector (hidden vector). The decoder will convert the hidden vector into the output sequence.

- I. Encoder: The encoder takes an input sequence and processes it into a Fixed-size representation called the "context vector" or "thought vector."
- The input sequence can be a sentence, paragraph, or any sequential data. The encoder typically uses recurrent neural networks (RNNs) such as LSTM (Long Short-Term Memory) to capture the sequential dependencies of the input.
- It processes the input sequence step by step and summarizes the information in the context vector, which aims to capture the essential information of the input.

- 2. Decoder: The decoder takes the context vector produced by the encoder and generates an output sequence. It can be another sequence of different length, such as a translated sentence or a response in a chatbot.
- Like the encoder, the decoder often utilizes an RNN architecture. It takes the context vector as the initial hidden state and generates each element of the output sequence step by step.

- Let's take machine translation from English to French as an example.
- Given an input sequence in English: "They", "are", "watching", ".", this encoder-decoder architecture first encodes the variable-length input into a state, then decodes the state to generate the translated sequence, token by token, as output: "Ils", "regardent", ".".

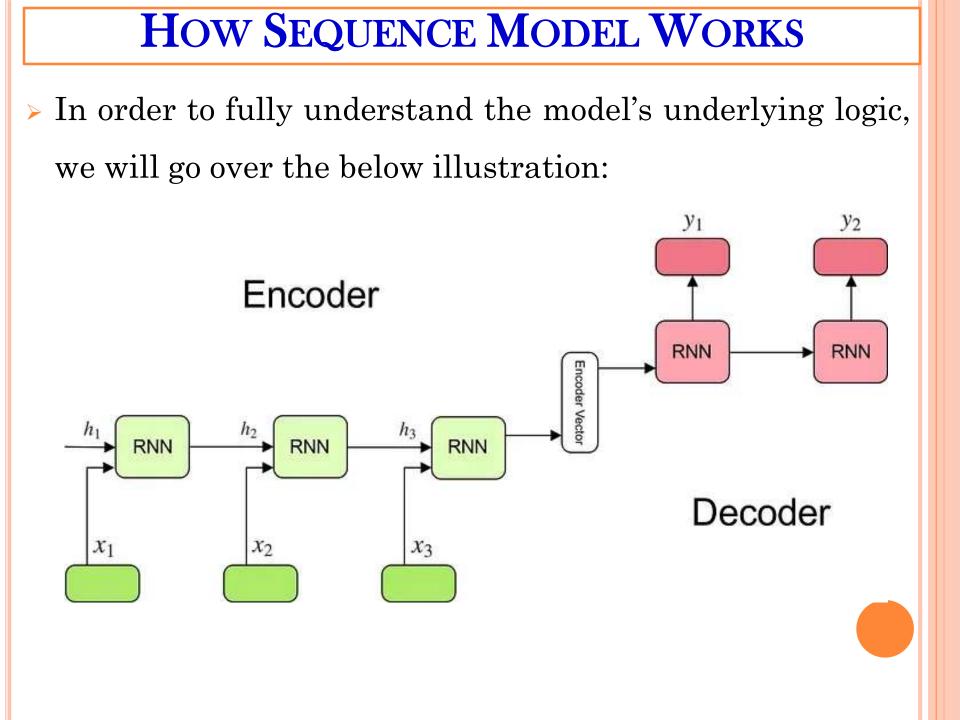
The following picture represents the encoder-decoder architecture as explained here. Note that both input and output sequences of data can be of varying length as shown in the picture below.



SEQ TO SEQ MODEL

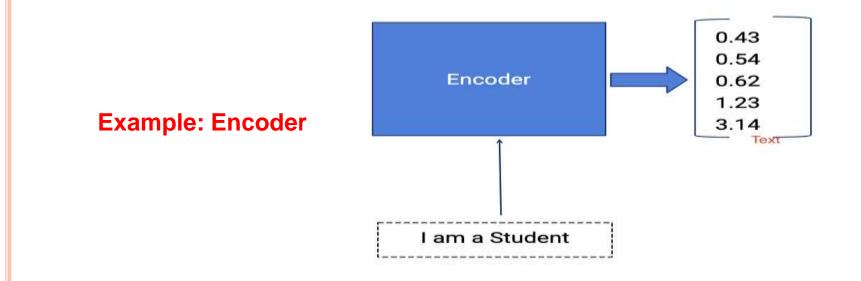
- Introduced for the first time in 2014 by Google, a sequence to sequence model aims to map a fixed-length input with a fixed-length output where the length of the input and output may differ.
- For example, translating "What are you doing today?" from English to Chinese has input of 5 words and output of 7 symbols (今天你在 做什麼?). Clearly, we can't use a regular RNN network to map each word from the English sentence to the Chinese sentence.
 - Sequence-to-sequence neural networks process a variable length sequence of input data (a text sentence, a time series, radio signals, etc.) and produce in output another data sequence, in general of a different length (e.g., a translation of the input sentence).

- Most sequence-to-sequence NNs are based on the encoder-decoder (Enc/Dec) architecture and produce in output another data sequence, in general of a different length (e.g., a translation of the input sentence).
- Most sequence-to-sequence NNs are based on the encoderdecoder (Enc/Dec) architecture



- Encoder: Multiple RNN cells can be stacked together to form the encoder. RNN reads each inputs sequentially
- For every timestep (each input) t, the hidden state (hidden vector) h is updated according to the input at that timestep X[i].
- After all the inputs are read by encoder model, the final hidden state of the model represents the context/summary of the whole input sequence.
- Example: Consider the input sequence "I am a Student" to be encoded. There will be totally 4 timesteps (4 tokens) for the Encoder model.

➢At each time step, the hidden state h will be updated using the previous hidden state and the current input.



At the first timestep t1, the previous hidden state h0 will be considered as zero or randomly chosen. So the first RNN cell will update the current hidden state with the first input and h0.

- Each layer outputs two things updated hidden state and the output for each stage. The outputs at each stage are rejected and only the hidden states will be propagated to the next layer.
- The hidden states *h_i* are computed using the formula:

$$h_t = f(W^{(hh)}h_{t-1} + W^{(hx)}x_t)$$

```
where,

h_t = hidden state

h_{t-1} = previous hidden state

W^{(hh)} = weights attached to the previous hidden state. (<math>h_{t-1})

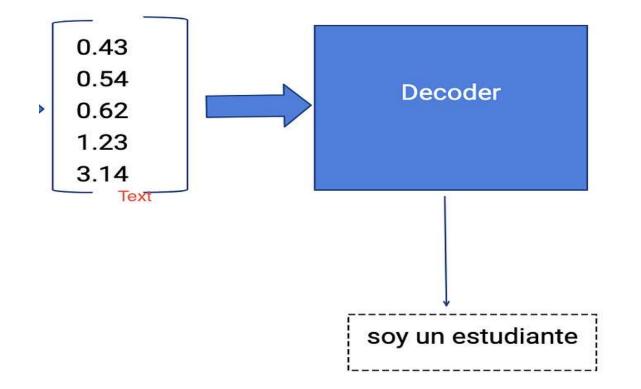
x_t = input vector

W^{(hx)} = weights attached to the input vector.
```

- At second timestep t2, the hidden state h1 and the second input X[2] will be given as input , and the hidden state h2 will be updated according to both inputs.
- This simple formula represents the result of an ordinary recurrent neural network. As you can see, we just apply the appropriate weights to the **previously hidden state h_(t-1) and the input vector x_t.**

- <u>2. Encoder Vector:</u> This is the final hidden state produced from the encoder part of the model. It is calculated using the formula above.
- This vector aims to encapsulate the information for all input elements in order to help the decoder make accurate predictions.
- It acts as the initial hidden state of the decoder part of the model.

- <u>3. Decoder</u> : The Decoder generates the output sequence by predicting the next output Yt given the hidden state ht.
- The input for the decoder is the final hidden vector obtained at the end of encoder model.
- Each layer will have three inputs, hidden vector from previous layer ht-1 and the previous layer output yt-1, original hidden vector h.
- t the first layer, the output vector of encoder and the random symbol START, empty hidden state ht-1 will be given as input, the outputs obtained will be y1 and updated hidden state h1.



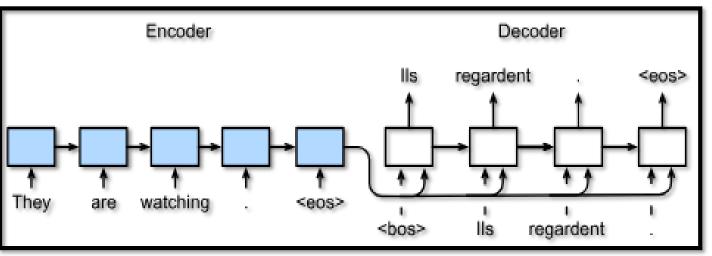
Example: Decoder

• Any hidden state *h_i* is computed using the formula:

$$h_t = f(W^{(hh)}h_{t-1})$$

• As you can see, we are just using the **previous hidden state to compute the next one.**

• Example:



ADVANTAGES

- 1. Flexibility with Input and Output Sequences: Seq2Seq models can handle variable-length input and output sequences, particularly those using the encoder-decoder architecture. This makes them suitable for tasks like machine translation, where the length of the input sentence (e.g., English) and the output sequence (e.g., French) can differ significantly.
- <u>2. Versatility in Application:</u> Seq2Seq models are not limited to text-based tasks. They are also employed in speech recognition, video captioning, and time series prediction.

APPLICATIONS

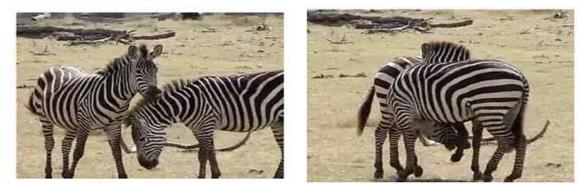
- A sequence to sequence model lies behind numerous systems which you face on a daily basis. For instance, seq2seq model powers applications like **Google Translate**, voice-enabled devices and online chatbots. Generally speaking, these applications are composed of:
- <u>**1. Machine Translation:</u>** a 2016 <u>paper</u> from Google shows how the seq2seq model's translation quality "approaches or surpasses all currently published results".</u>

English▼	÷ 4) ←→	Chinese (Traditional) 🕶	
How are yo	DU? Edit		你好嗎? Nǐ hǎo ma?	

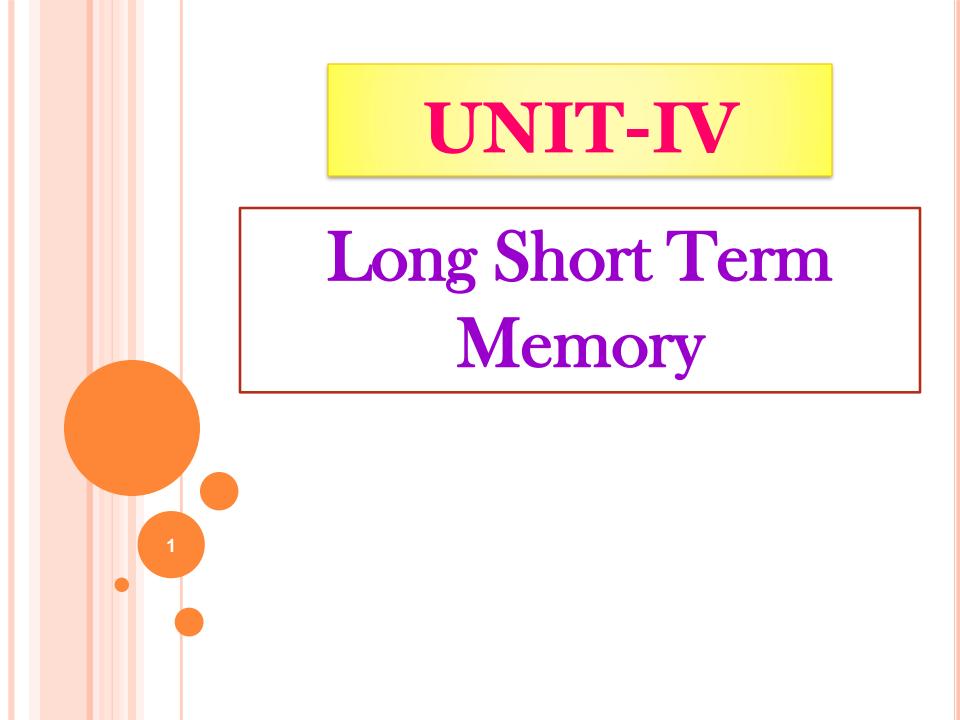
• 2. Speech recognition – another Google paper compares the existing seq2seq models on the speech recognition task.

o 3. Video captioning – a 2015 <u>paper</u> shows how a seq2seq yields

great results on generating movie descriptions.



S2VT: A herd of zebras are walking in a field.



- Disadvantages of RNN
- * Introduction to LSTM
- Architecture of LSTM
- * How LSTM Works
- Difference between RNN and LSTM
- * Advantages
- Step by Step Explanation

DRAWBACKS OF RNN

- Drawbacks of RNN: An RNN can only remember the immediate past input. It can't use inputs from several previous sequences to improve its prediction.
- I. The problem with Recurrent Neural Networks is that they simply store the previous data in their <u>"short-term memory"</u>. Once the memory in it runs out, it simply deletes the longest retained information and replaces it with new data.
- 2. Vanishing Gradient Problem: The Vanishing Gradient Problem is a drawback of recurrent neural networks (RNNs) that occurs when gradients used to update the network's weights become very small as they are propagated back through many time steps.

- > This can make it **difficult for RNNs to learn large data sequences.**
- A Traditional <u>RNN</u> has a single hidden state that is passed through time, which can make it difficult for the network to learn long-term dependencies.
- ► Based on the above Two Problems we can use LSTM.

LONG SHORT TERM MEMORY

- Long Short-Term Memory (LSTM) is a type of artificial recurrent neural network (RNN) architecture used in the field of deep learning.
- Long Short-Term Memory is an improved version of recurrent neural network designed by Hochreiter & Schmidhuber in the Year 1991.
- A sentence or phrase only holds meaning when every word in it is associated with its previous word and the next one.

- LSTM, is opposed to RNN, extends it by creating both short-term and long-term memory components to efficiently study and learn sequential data.
- Hence, it's great for Machine Translation, Speech Recognition, time-series analysis, Audio and Video Classification etc.
- Long Short Term Memory (LSTM) networks are a powerful variant of Recurrent Neural Networks (RNNs) designed to <u>handle</u> long-term dependencies in sequential data. The core architectural advantage of LSTMs over traditional RNNs lies in their memory cells and gating mechanisms.

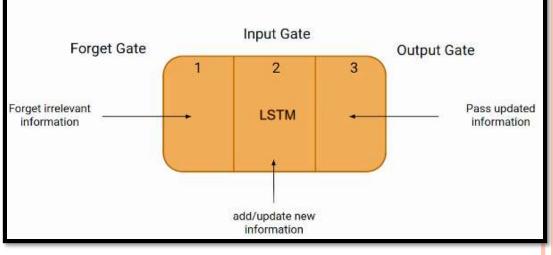
- Unlike RNNs, which struggle with the vanishing gradient problem, LSTMs incorporate specialized gates that manage the flow of information.
- LSTMs model address this problem by introducing a memory cell, which is a container that can hold information for an extended period.

LSTM ARCHITECTURE

> The LSTM architectures involves the memory cell which is

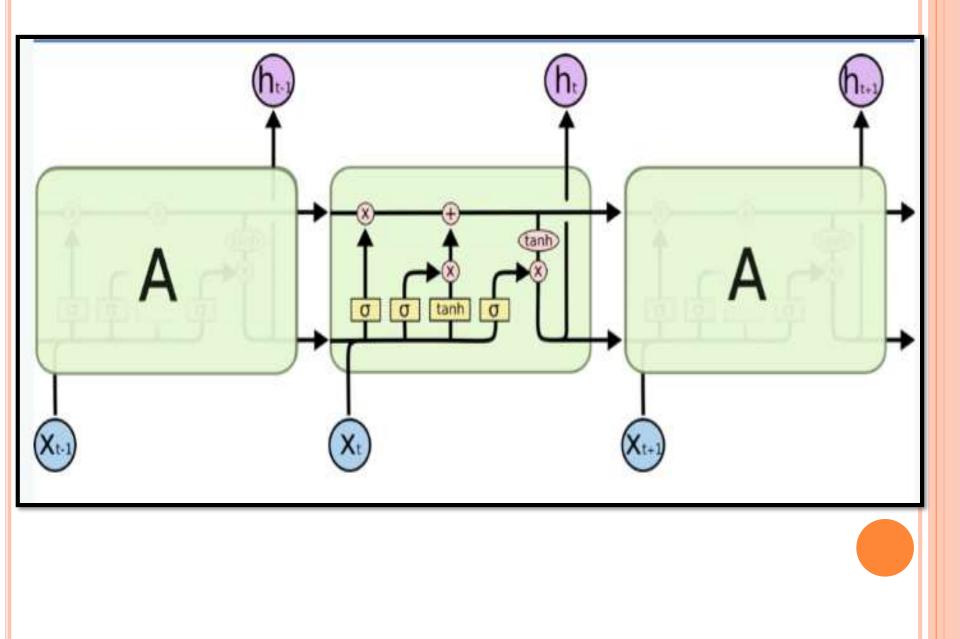
controlled by three gates:

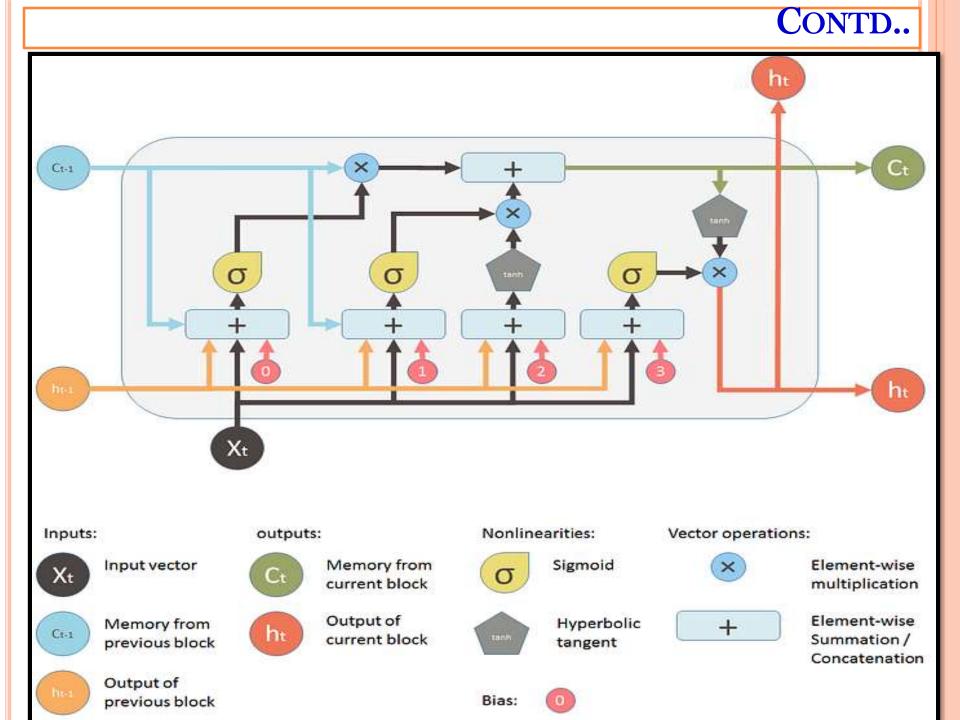
- The input gate,
- The forget gate, and
- > The output gate.



- These gates decide what information to add to, remove from, and output from the memory cell.
- The input gate controls what information is added to the memory cell.

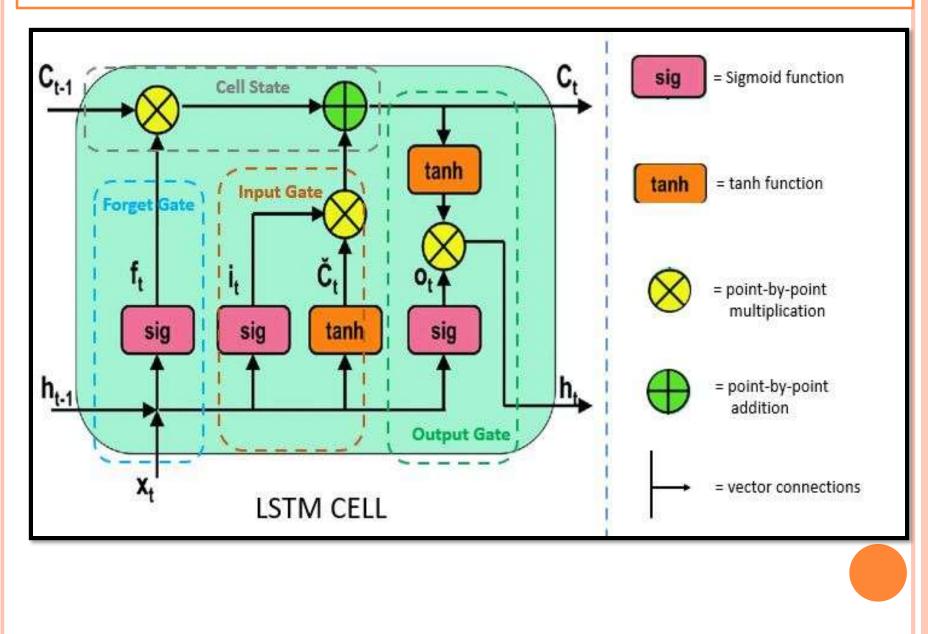
- The forget gate controls what information is removed from the memory cell.
- The output gate controls what information is output from the memory cell.
- Cell (the memory part of LSTM): The cell stores the state of a sequence, so it has the ability to either keep or forget certain information.
- The LSTM maintains a hidden state, which acts as the short-term memory of the network. The hidden state is updated based on the input, the previous hidden state, and the memory cell's current state.





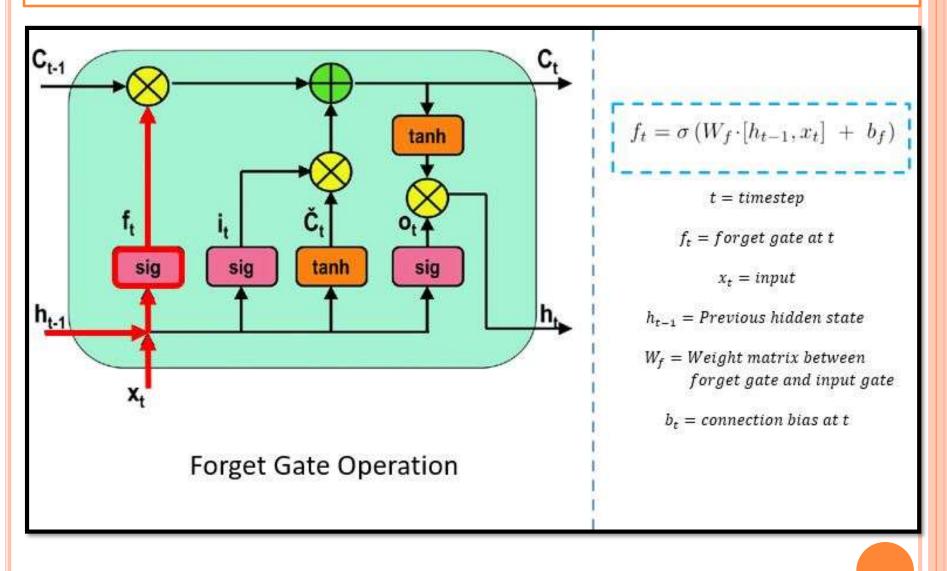
HOW DOES IT WORKS?

- Here Information is retained by the cells and the memory manipulations are <u>done by the gates.</u>
- Let's assume we have a sequence of words (w1, w2, w3, ..., wn) and we are processing the sequence one word at a time. Let's denote the state of the LSTM at time step t as (ht, ct),
 - * where ht is the hidden state and ct is the cell state.
- ct-1 stands for the input from a memory cell in time point t;
 Xt is an input in time point t;
- ht is an output in time point t that goes to both the output layer and the hidden layer in the next time point.

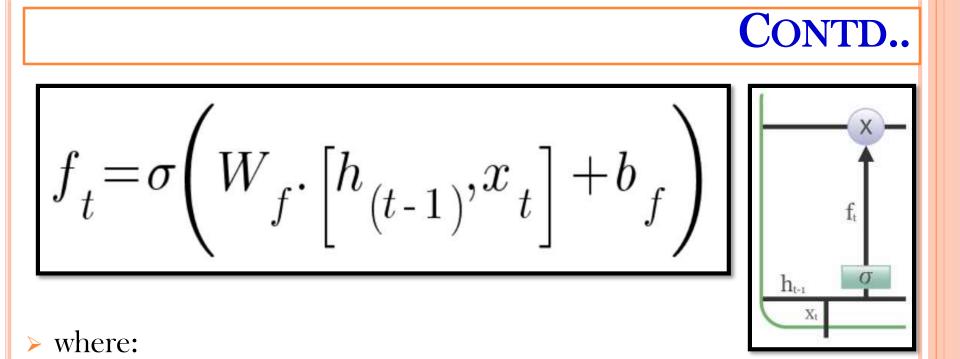


- Thus, every block has three inputs (xt, ht-1, and ct-1) and two outputs (ht and ct). An important thing to remember is that all these inputs and outputs are not single values, but vectors with lots of values behind each of them.
- Step-1: The LSTM receives the input vector (xt) and the previous
 state (ht-1, ct-1).
- Step-2: Forget State: The information that is no longer useful in the cell state is removed with the forget gate. Two inputs xt (input at the particular time) and ht-1 (previous cell output) are fed to the gate and multiplied with weight matrices followed by the addition of bias.

- The resultant is passed through an activation function which gives a binary output. If for a particular cell state the output is 0, the piece of information is forgotten and for output 1, the information is retained for future use.
- * <u>Role:</u> By selectively forgetting irrelevant data, the forget gate helps in preventing the cell state from being cluttered with unnecessary information.
- * The equation for the forget gate is:



[ht-1+Xt] given to sigmoid and the value is stored in ft

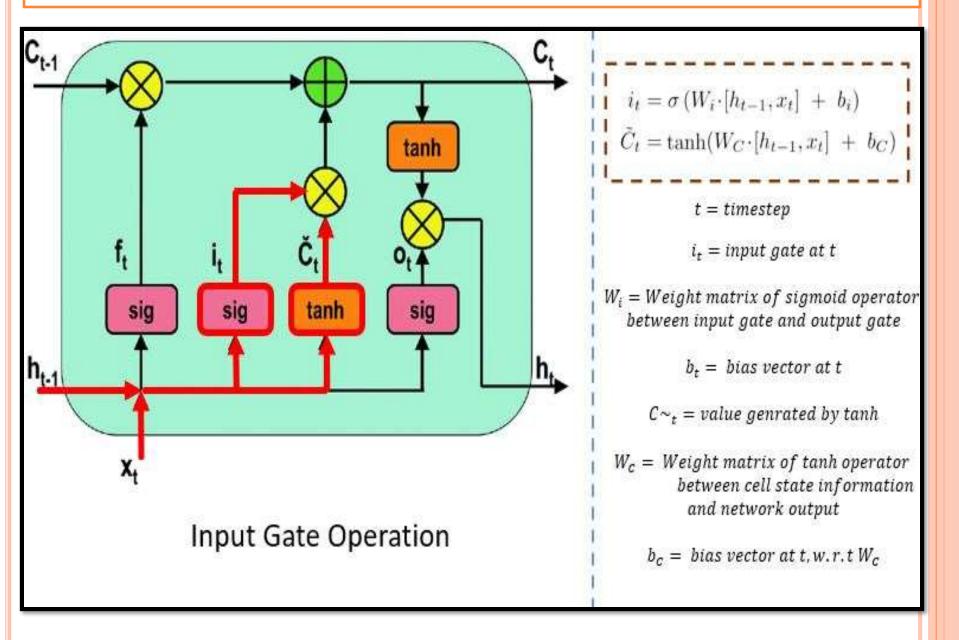


- > Wf represents the weight matrix associated with the forget gate.
- [ht-1, Xt] denotes the concatenation of the current input and the previous hidden state.
- **bf** is **the bias** with the **forget gate**.
- $\succ \sigma$ is the sigmoid activation function.

- <u>Step-3:</u> Input Gate: The input gate (it) decides what new
 information to store in the cell state.
- * It has two parts. A sigmoid Function called the "input gate layer" decides which values we'll update, and a tanh Function creates a vector of new candidate values (Ct[~]) that could be added to the state. Ie, First, the information is regulated using the sigmoid function and filter the values to be remembered similar to the forget gate using inputs h_{t-1} and x_t .
- * Then, a vector is created using *tanh* function that gives an output from -1 to +1, which contains all the possible values from h_{t-1} and x_t . At last, the values of the vector and the regulated values are multiplied to obtain the useful information.

***** The equation for the input gate is:

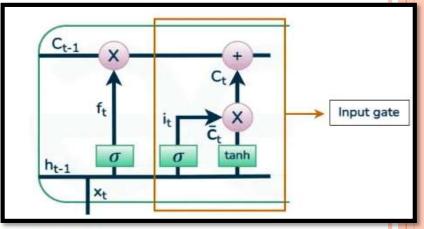
$$\boldsymbol{i}_t \!=\! \sigma \! \left(\boldsymbol{W}_i \! \cdot \! \begin{bmatrix} \boldsymbol{h}_{(t-1)} \! , \! \boldsymbol{x}_t \end{bmatrix} \! + \! \boldsymbol{b}_i \right)$$



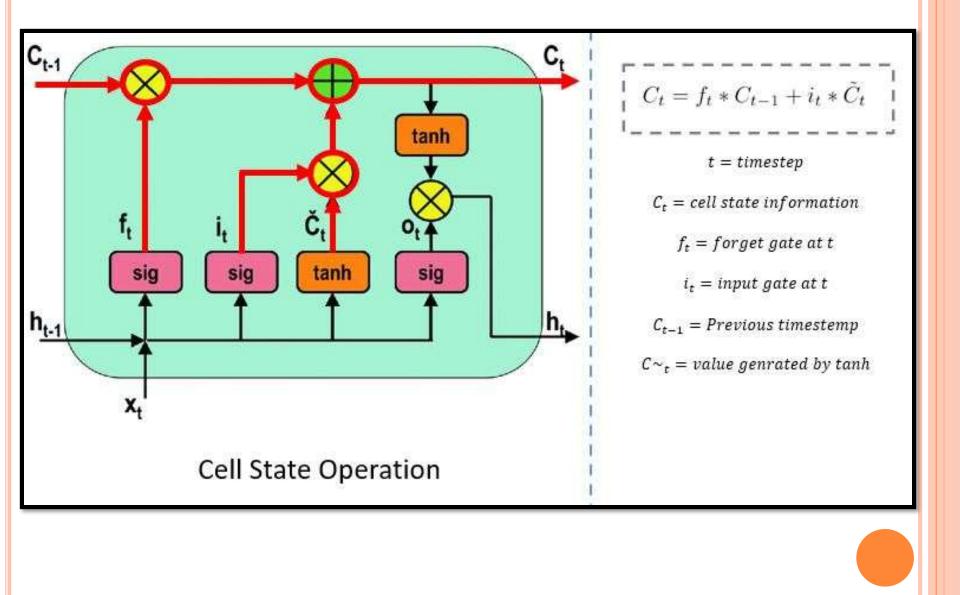
* We multiply the previous state by f_t , disregarding the information we had previously chosen to ignore. Next, we include $i_t * C_t$. This represents the updated candidate values, adjusted for the amount that we chose to update each state value.

$$C_t = f_t C_{t-1} + i_t \hat{C}_t$$

where

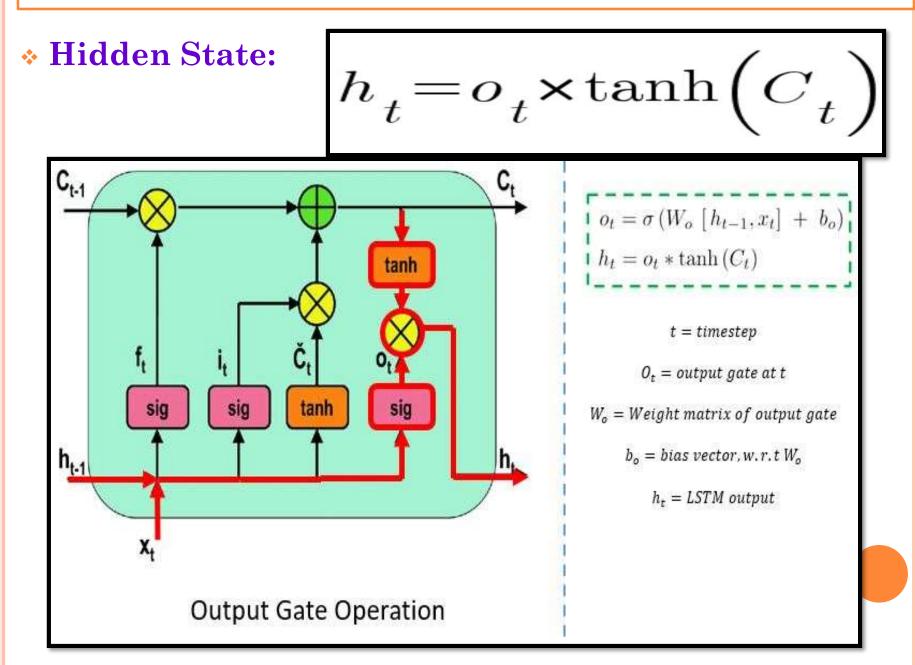


- O denotes element-wise multiplication
- tanh is tanh activation function



Step-4: Output Gate: The task of extracting useful information from the **current cell state** to be **presented as output is done by the** output gate. First, a vector is generated by applying tanh function on the cell. Then, the information is regulated using the sigmoid function. At last, the values of the vector and the regulated values are multiplied to be sent as an output and input to the next cell. The equation for the output gate is:

$$\boldsymbol{o}_t \!=\! \sigma \! \left(\boldsymbol{W}_o \! \cdot \! \begin{bmatrix} \boldsymbol{h}_{(t-1)} \! , \! \boldsymbol{x}_t \end{bmatrix} \! + \! \boldsymbol{b}_o \right)$$



LSTM VS RNN

Feature	LSTM (Long Short-term Memory)	RNN (Recurrent Neural Network)
Memory	Has a special memory unit that allows it to learn long- term dependencies in sequential data	Does not have a memory unit
Directionality	Can be trained to process sequential data in both forward and backward directions	Can only be trained to process sequential data in one direction
Training	More difficult to train than RNN due to the complexity of the gates and memory unit	Easier to train than LSTM
Long-term dependency learning	Yes	Limited
Ability to learn sequential data	Yes	Yes
Applications	Machine translation, speech recognition, text summarization, natural language processing, time series forecasting	Natural language processing, machine translation, speech recognition, image processing, video processing

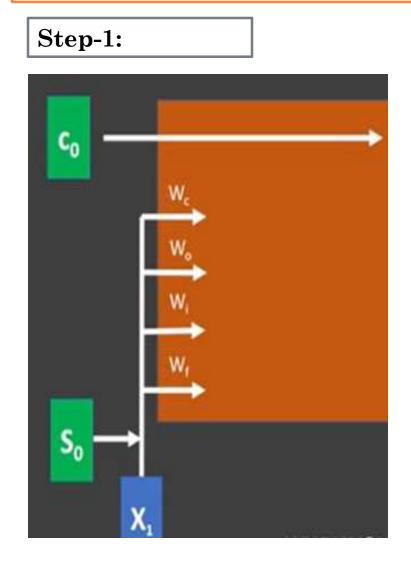
ADVANTAGES

- <u>1. Ability to process sequential data:</u> LSTMs are designed to work with sequential data, such as time series data or natural language text. This makes them well-suited for a wide range of applications, including speech recognition, language translation, and sentiment analysis.
- 2. Ability to handle long-term dependencies: LSTMs are specifically designed to address the problem of vanishing gradients, which can occur in traditional RNNs when trying to process long sequences. This makes them well-suited for tasks that require processing long-term dependencies, such as predicting stock prices or weather patterns.

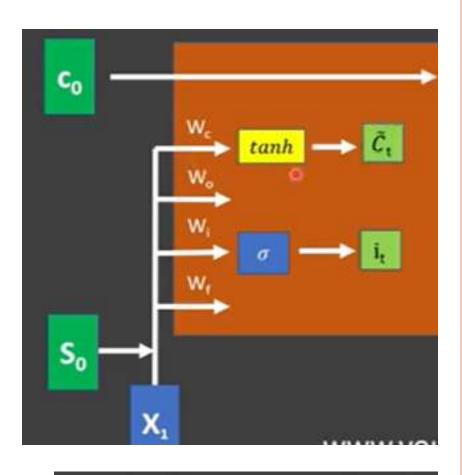
• <u>3. Memory cell:</u> The memory cell in an LSTM allows the network to selectively remember or forget information over long periods of time, making it more effective at handling complex tasks than other types of RNNs.

$$\begin{split} f_t &= \sigma(W_f S_{t-1} + W_f X_t) - \text{Forget Gate} \\ i_t &= \sigma(W_i S_{t-1} + W_i X_t) - \text{Input Gate} \\ o_t &= \sigma(W_o S_{t-1} + W_o X_t) - \text{Output Gate} \\ \tilde{C}_t &= tanh(W_c S_{t-1} + W_c X_t) \\ c_t &= (I_t * \tilde{C}_t) + (f_t * c_{t-1}) - \text{Cell State} \\ h_t &= o_t^{\textcircled{o}} * tanh(c_t) - \text{New State} \end{split}$$

11



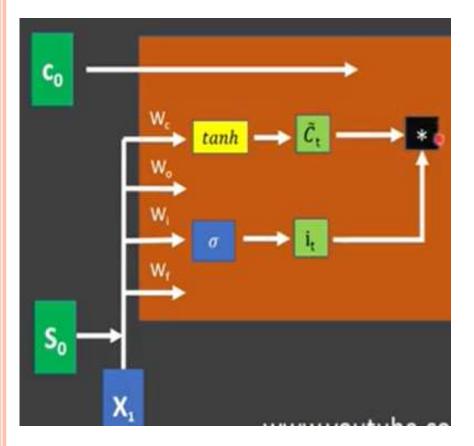
Step-2:



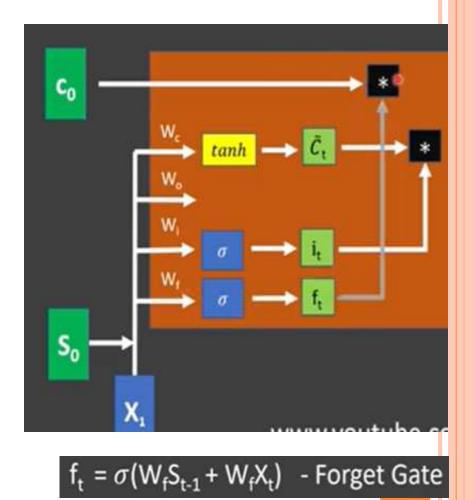
 $i_t = \sigma(W_iS_{t-1} + W_iX_t)$ - Input Gate

 $\tilde{C}_{t} = tanh(W_{c}S_{t-1} + W_{c}X_{t})$

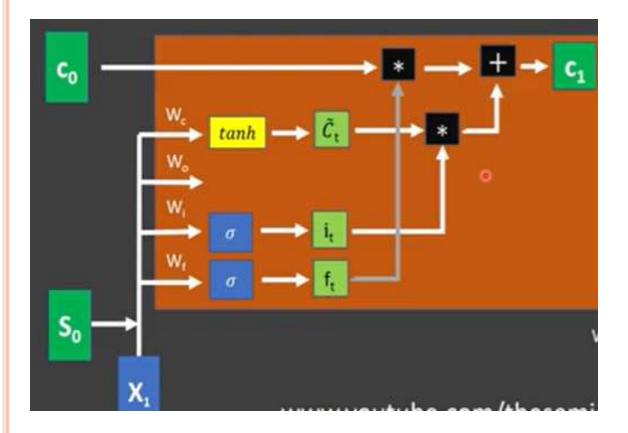
Step-3:



Step-4:

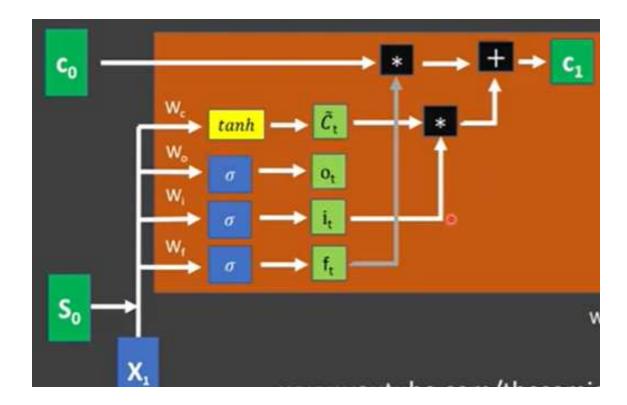


Step-5:



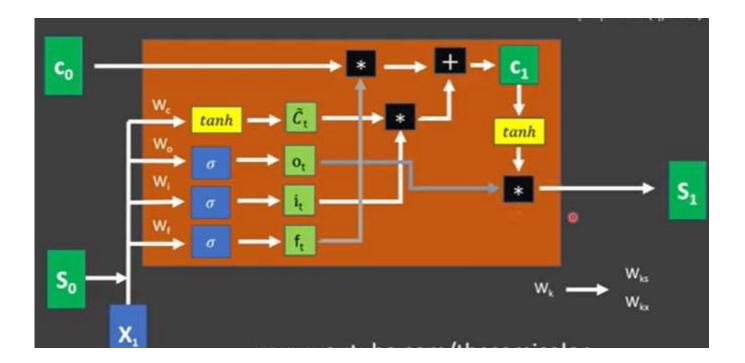
 $c_t = (I_t * \tilde{C}_t) + (f_t * c_{t-1}) - Cell State$

Step-6:



$$o_t = \sigma(W_oS_{t-1} + W_oX_t)$$
 - Output Gate

Step-7:



$$h_t = o_t^{\bullet} * tanh(c_t) - New State$$